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ABSTRACT: A model of water-saturated soil as an ideal li- 
quid has already been proposed [1]. Experimental investiga- 
tions of shock waves [2] have shown that for small stresses 
in water-saturated soil features of a solid plastic body begin 
to manifest themselves. As regards its properties the soil ap- 
proximates to the model proposed in [3]. 

The results of tests on the  interaction of a plane shock wave 
in the soil with a moving obstacle are given below. As a de- 
velopment of papers [2, 4, 5] an approximate solution is given 
for the problem of the interaction of waves with an obstacle. 
At high pressures the ground is regarded as nonlinearly elas- 
tic, and at low pressures as a plastic medium. A similar ap- 
proach may be applied to water-saturated and nonsaturated 
soils when the wave is a shock wave. Experimental values 
of the parameters of motion of the obstacle are compared 
with the results of caleulation. 

1. ExperimEntal conditions. The tests were carried out under 
field conditions in water-saturated soil obtained by pouring quarry 
sand with slightly rounded grains into a pit filled with water. The wat- 
er level in the pit remained constant during the whole time that the 
tests were carried ont. 
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Fig. 1 

The density of the soil (allowing for the water and air contained 
in the pores) was P0 = 1.96-2.02.103 kg/m s. The entrapped air con- 
tent a 1 comprised 0. 015-0. 025 of the over-all volume. The granu- 
lometric composition is given below 

8 ~ t  1--05 0.5--0.25 0.25--0.t 0.t--0.05 O.05[mm] 
~ = 8 - - t 2  10--12 25--30 30--40 4--8 2--3 [ % ]. 

Here 5 is the diameter of the particles, ~ their percentage content. 
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Fig. 2 

The laws of plane wave propagation and interaction with obstacles 
in the one-dimensional formulation are determined by the law of 

dynamic compression of the medium. Thus the tests included mea- 
surements of wave parameters for waves formed in the soil upon ex- 
plosion of a buried concentrated charge. From a knowledge of these 
parameters the law of dynamic compressibility of the ground was 
determined with the help of the well-known relationships at the front 
of a shock wave expressing the conservation of mass and momentum. 

The interaction of waves with a moving obstacle-a  concrete 
cube of side length Z = 1 m - w a s  investigated in the same soils, but 
with plane charges detonated on the surface of the ground over the 
obstacle. On explosion piane waves were formed. The loads acting 
on the cube and the parameters of its motion were determined in the 
tests. 

2, Experimental determination of the compressibility of the soil 
and choice of a system of calculatinn.. The maximum pressure at the 
front of the shock wave p, corresponding to its direction of motion, 
the velocity of the front D and the initial density of the medium P0 
are related to the deformation of the medium at the front by the 
familiar relation 

P po -- p (2. I) 

Here p is the current density of the medium. 
In the tests where buried concentrated charges of compressed TNT 

were exploded the pressure p and time t of arrival of the wave front 
were measured at points situated at different distances R from the 
explosion center. 
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Fig. 3 
The law of motion of the wave front (pressure maximum) is repre- 

sented in Fig. 1, The relative distance R ~ is represented on the ab- 
scissa and in the conditions of spherical symmetry is equal to 

B; = RC -'h m/kg I/s. 

Figure 2 gives a graph of the propagation velocity of the pressure 
maximum as a function of the relative distance, constructed in ac- 
cordance with Fig. 1. 

The tests showed that for p �9 5 -6 .10s  newton/m 2 the wave has a 

pressure discontinuity at the front so that the velocities of wave front 
propagation and the pressure maximum coincide. 

Figure 3 shows the results obtained in the tests for the maximum 
pressure at the front of the shock wave as a function of the relative dis- 
tance. To the first approximation this function may be written analy- 
tically in a form satisfying the principle of similarity 

p = 90 (R~ -~.~" (2.2) 

A graph of p as a function of the deformation g, expressing the 
law of dynamic compression of the soil, is given in Fig. 4 (curve 1). 
The graph was constructed in accordance with (2. 1) from the ex- 
perimental values of p and D given in Figs. 2 and 3. No curve is given 
for p < 5.105 newton/m 2, since the wave is not a shock wave and 
equation (2. 1) is inapplicable. In the pressure interval p > 5.105 new- 
ton/m 2 an elastic wave is not formed in front of the plastic (shock) 
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wave in the soil under investigation. 
The construction of soil compression diagrams from experimental 

values of shock wave parameters is considered in [2, 6], etc. 
In carrying out the tests simultaneous measurements were made of 

the pressure acting in the direction of wave motion p and in the per- 
pendicular direction Pr" This allowed the magnitude of the lateral 
pressure coefficient k r to be determined for different values of the 
normal pressure p, The values obtained for k r are given below. 

pi0-5= 5 l0 20 30 iN/mS](  ~ )  
k~ =0.75 0.88 0.95 I k ~ =  . 

Since k r was known from the test, the law of compressibility of 
the soil could be represented in the form of the mean normal stress 
o as a function of the deformation 

= Vs(I  + 2~,)p = i (~) .  

For k r close to unity, the functions p(s) and o(e) coincide in the 
first approximation. 

For p > Pn = 10' 10~newton/m 2 the lateral pressure coefficient 
is practically equal to unity, i . e . ,  the soil behaves like a liquid. As 
the stress decreases, the quantity k r also decreases, and the soil ac- 
quires the properties of a solid. 

The value of the pressure Pn at which the properties of water- 
saturated soil change depends on its entrapped air content. The less 
air, the smaller is this pressure. Tests [2] show that for a = 0. 001 
we have Pn = 1-2-  10 ~ N/m z. 

Tests show [7] that in soils which are not water-saturated the 
weight distribution curves ch(s ), where ot = - p  differ little from the 
Iines e = const, and the residual deformations are close to the maxi- 
mum. tf we consider that the compression curves are such [2, 5] that 
dcq/d~ > 0, d2ot/dr 2 < 0 for small pressures, and dol/de > 0, d2ch/ 
/de ~ > 0 for large pressures (exceeding several atmospheres), we find 

that as the stress increases the intensity of residual deformation in- 
crease in soils grows at first and afterwards falls off. This is taken 
into account in the soil model applied below. 
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Fig. 4 

Figure 4 also represents the function p(e) calculated in accordance 
with the equation of state of water-saturated soft as an ideal three- 

component liquid given in [1]: 

p . -x/'Y, + t]-~t'r p =po f l  1"~ " - '~a i  ) 0% L p-------~-i--z~ F'f, (p- po) ._t. 

F,e(p-- /~)  + t ] - ' / v ~  -1 (2.$) 

p o = ~ x p l + a 2 P ~ + ~ n P 8  . (2.4) 

Here a t, a 2, cq are the volume content of entrapped air, water 
and solid component, respectively, Or, P~, Ps are the densities of the 
components in the Initial state; c 1, c 2, c s is the velocity of sound in 
the component~ in the initial state; Yv )%, ~'s are the iso-entropy coef- 
ficients of the components taken equal to 1.4, a, 3, 00 is the density 
of the soil in the initial state. 

Curves 2, 3, and 4 correspond to calculations for cq, equal to 0.018, 
0. 020 and 0.025, i . e . ,  for minimum, medium and maximum air con- 

tent obtained in the tests. 
It follows from a comparison of the curves in Fig. 4 that the ex- 

perimental curve 1 of the dynamic compression for a pressure in ex- 
cess of 15-20. I05 N/m s corresponds to the theoretical curve 3. This 

shows that the compressibility of the soil under investigation is de- 
termined for p > I5-20 .10  s N/m s by its compressibility as a three- 

component medium and is satisfactorily described by equation (2.3). 
The departure of the experimental curve 1 from the theoretical 

3 for small pressures is connected with the fact that in this case the 
compressibility of the soil is determined not 0nly by its compressibility 
as a three-component medium, but also by the compressibility of the 
skeleton. Thus the experimental values of the deformation are less 
than those calculated on the basis of the three-component liquid 

model. 
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Fig. 5 
In carrying out the calculations we make use of the approximate 

diagram p(e) (Fig. 4), corresponding to loading and unloading of the 
ground. We assume that loading takes place in two rectilinear sections 
(broken line) approximating curve 1, calculated from the values of the 

shock wave parameters 

p = - -  A t  ~ (V - -  Vo), P ~ Pn first section OL 
t ( V . ~ - -  

p = -- A~J (V -- V,) +/~a,  p >i p ,  second section L M  P ) 
(2.5) 

For any values of the maximum pressure, unloading occurs along 
lines parallel to the straight line LM. This takes into account the ir- 
reversibility of deformations at small pressures. In accordance with 

test data we take 

pn = 10"t05 newton/m z, 

A~ = 4.25. t0 s kg/sec �9 m s, 

A~ = 9.5-105 kg / sec .m z. 

For p > Pn the residual deformations of the soil are taken to be 
identical, except for the dependence on maximum pressure. 

3. Calculation of interaction of wave with obstacle. Let the pres- 
sure in the incident wave at the Ievel of the obstacIe (cross section 
h = 0) for t = 0 increase in a step from P0 = 0 to Pro, and subsequent- 
ly fall off according to a given law 

p = 1 (t). ( 3 . 1 )  

On the side of the incident wave the properties Of the medium are 
determined by equations (2.5), and beyond the obstacle for loading 

and unloading 
p = -- A *~ EV -- I,%). (3.2) 

We take A* = A l in the calculations. 
We employ Lagrangian coordinates (mass h and time t) and repre- 

sent the region of the incident wave by the profile 1 in the h, t plane, 
the reflected wave by profile 2, and the wave passing beyond the ob- 
stacle by 3 (Fig. 5). The regions 1 correspond to negative values of h 

and t. 
The flow in these regions is determined by the solution of the funda- 

mental equations of motion 

Ou O ~  Ou OV 
Ot ] - ' ~ = 0 '  Oh Ot = 0 ,  ( 3 . 3 )  

where u is the velocity of the particles. 
When the function p(V) is made linear, the solution of the basic 

equations has the form [2] 

p = Fi (h - -  A~t) + F2 (h + a2t) ,  

A2u  = F 1 (h - -  A2t ) - -  F~ (h + A~t) ( 3 . 4 )  

where the acoustic impedance A z corresponds to unloading of the medium. 
The functions F l and F 2 are determined by the initial and boundary 

conditions. 
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In accordance  with [2, 4, 5], we find the solution in region 1. 

To start with, we wil l  consider the case when P m >  Pn' The re la -  
t ionships at the front of the inc ident  shock (the boundary of regions 
1.0 in Fig. 5), g ive  

~ , ' ~  ~ ' ,  

p = A ~  a __  h .  ~ , u = A 2  ~ _ h s . ~ .  , 

en (3 .5)  ~, = - -  Pn + A'~ ~ (Vo - -  Vn) = - -  Pr~ - -  A* ~ p--o", 

as was shown in [5]. 

Here e n is the deformat ion for p = Pn' P0 is the in i t i a l  density of the 
medium,  hs is t he  veIoe i ty  of  the front in h, t coordinates.  We intro-  
duce the symbols 

h s" h s" 
~x = A~ - -  h." ' r = A~ "4- h," . 

At the front 

2F t = Ltpa, 2F~ = -- kq~ , 

in accordance  with (3.4)  and (3.5) .  

The ve loc i ty  of the inc ident  wave front is not constant.  As it 

changes,  the function r changes l i t t l e  in comparison with ~t.  We 

shall  first find the second function F~, For the approximat ion  which 

has been introduced the ve loc i ty  of the front hs for Pn < Pm < Pn +t  
(where Pn +~ is the m a x i m u m  pressure, corresponding to the part of 

the approximat ion  considered) l ies  in the in terval  

Thus 

k en+ l / 

h i  ~ w 
A~ ---~-; ~" x< a--~-~+ ~ 

Hence we may take  

1 A1 w 

to the first approximation.  From the condi t ion at the cross sect ion h = 
= 0 we find the first function in region 1 

F~ (h - -  A , t )  = - -  F ,  4- , ( ~ )  . (3 .6)  

From this we have  the solution in region ] 

�9 { - - h 4 - A # ~  ( - - h + A # ~  
P = ' ~ - - ~ ' ( " ~ 2 )  ' u = ~-~[1 \ A2 ] - -  2F2]. 

We shall find the equat ion of motion of the obs tac le .  The states 

of the med ium at and ahead of the ref lected wave front l i e  on one 

straight  loading line,  since P m >  Pn" Thus the ve loc i ty  of  the ref lected 
wave front is equal to the acoustic impedance  

t' P - ~ ' / '  h ;  = - \ # - : ~ ; j  = _  A. . .  

Here Pl and V 1 are the pressure and vo lume  in the region 1. We 
obta in  from the relat ionships at the ref lected wave front 

P + A 2 u = p t + A 2 u t .  

It follows from this that  the function F~(h - Azt) passes from re- 

gion 1 to region 2. 
The pressure on the obs tac le  in region 2 is, in view of (3 .4)  and 

(3. e), 
p = 2F1 ( - -  A2t) - -  A 2 u  = - - 2 F ~  + 2 / ( t )  - -  A2u,  

2F 2 = --  kq% . (3. 7) 

Here u is the ve loc i ty  of the obstacle ,  equal  to the ve loc i ty  of the 

par t ic les  of the med ium which are in contac t  with it. 

For t = 0 the press ure on the obstacle  is p = 2 i f ( t )  - F2( -Azt ) ] .  

In view of  (3.2),  in region 3 

p* = A* u (3, 8) 

for al l  part icles,  and consequent ly  on the obstacle  too. 

Hence we have the equat ion of mot ion of the obs tac le  

mu" = p - -  p* ~ - -  2F2 -[- 21 (t) " (A ,  4- A * ) u  (3 .9)  

where m is the mass of the obstacle per unit area�9 

If the pressure change in the initial cross section is given in the 

form 

p = f ( t )  = p m ( l  - -  t / 0 ) ,  (3�9 

then the equat ion of mot ion of  the obstacle  is 

2pra 
u '" t -  C u - t -  B t + O = O, B=-~-~z 0 , 

C :  A 2 4 - A *  D : - - 2 P m - - }  -2F----~ (3. ii) 

Integrating this equation on condition that u = 0 for t = O, we ob- 

tain the velocity of the obstacle 

u (t) = D B C C 2 ( C t - - t ) + M e - C t '  

Taking into account  that  x = 0 for t = 0 we find for the d isp lace-  

ment  of  the obstacle  

t 
l M ~, B t  2 

x.=- u d t = ' - C - ( i - - e - ~ " ) - - M t - -  2 6  " (3.13) 
o 

The pressures at the front and rear boundaries of the obs tac le  are 

de te rmined  by equations (8 .7)  and (3.8),  s ince tile ve loc i ty  of the 
obs tac le  is known. The acce le ra t ion  of the obstacle  is 

u" = - -  B / C - -  M C e - C t � 9  (3 .14)  

The ve loc i ty  of the obs tac le  increases at first and then decreases.  

It r eaches  a m a x i m u m  for 

lg (B  - -  D C )  - -  lg B 
t * _  C l g e  (3.35)  

We shall consider the second case when the m a x i m u m  pressure at 

the in i t i a l  cross section Pm is less than Pn' but becomes  greater  than 

Pn on ref lect ion from the obstacie .  
If the pressure is g iven by equat ion  (3 .10)  at the cross section h = 0 

then, as has been shown in [4], we obtain the solution in region 1 in 

the form 

p = p m  ( t + Aa'  + A'-2 h to) 
(3. 16) 

.4,0 2AIA, v , .  

The ve loc i ty  of the inc ident  wave front h s is equal  to A x, and that  

of the ref lected wave is close to A z. Assuming that  h s = A 2 for the re- 

f lected wave we find from the relat ionships at the front that  the func- 

tion 

At  4- A~ F A1 + A, 
F ! (h  - -  A # )  = ~ [ l  4 -  ~ (h  - -  A 2 t ) ]  P m  (3 .17)  

passes from region 1 to region 2. 
From this we obtain the equat ion of mot ion of the obstacle  in the 

form (3.11).  Here 

( A t  4- A~)2pm A2 "4- A*  A t  "4" A I  
B - -  2AxA2mO , C ~  m , D ~ - - ~ p m .  (3 .18)  

The veloci ty ,  d i sp lacement  and acce le ra t ion  of  the obstacle  are 
de te rmined  by expressions (3.12),  (3 .13)  and (3.14)  for the corres- 

ponding Values of B, C, D. The pressure act ing from above on the 

obstacle  i s  de te rmined  by the expression 

p = 2F1 ( - -  A2t) - -  A 2 u .  

The pressure from below is found in accordance with (3.8) .  
4. Comparison of the results of tests and ca lcula t ions .  The tests 

were carr ied out with flat charges la id  on the surface of the ground. 
The dimensions of the charge were 4 .5  x 4 .5  m z. The obstacle ,  a 
concrete  cube, was set in the ground in the center  of the area under 

the charge.  The fact that  the area of  the charge was in excess of tha t  
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of the obstacle ensured that a plane shock wave fell on all points of 

the obstacle, undistorted by the influence of a rarefaction wave from 
layers of soil over which there was no charge. 

The tests were carried out at two values of the density (thickness) 
of the plane charge, for which the maximum pressure in the wave 
incident on the obstacle was 5.5.105 and 20 �9 10 s newton/m 2. 

The pressure was measured by strain-gauge sensing elements, 

and the velocity of the obstacle by induction velocity gauges. 

In Figs. ~ and 7 the broken lines correspond to the mean experi- 

mentai values, and the full lines to the values calculated from equa- 

tions (3.10), (a. 7), (3.8), (3.12). Figure 6 corresponds to Pm = 
= 5.5 �9 10 s newton/m a, Fig. 7, to the value Pm = 20- 10s newton/rn z. 

Here 1 is the pressure in the incident wave at the level of the top of 

the obstacle, 2 is the pressure acting on the obstacle from above, 3 
is the pressure acting on the obstacle from below, and 4 is the veloc-  

ity of the obstacle. In the tests the greatest departures Of the results 

of individual measurements from the mean vaIues did not exceed 
30-40%. 

tt is clear from the graphs that at the moment when the shock 

front arrives at the obstacle the pressure acting upon it from above 

increases in a step, and subsequently decreases. At the same moment 

the accelerated motion of the obstacle commences, leading to the 

formation of a continuous compression wave beyond it. The pressure 

acting on the obstacle from below is caused by its displacement and 
gradually increases as the velocity of the obstacle increases. 

p. t05 newton/ha g U m / s e i ~  

f t 4 tseclO -a 
Fig. 

For t = t* the pressure from below reaches a maximum and be- 

comes greater than the pressure from above. Here the acceleration 

of the obstacle decreases to zero. For t > t* the velocity of the ob- 

s ta t ic  decreases, the pressure from above is less than from below, and 

the acceleration is negative. Only the experimental value of t* is de- 

noted in Figs. 6 and 7. 
The loads experienced by the obstacle for t > t* are practically 

equal to the stress in the incident wave. We may assume that the ob- 

stacle is set in motion together with the ground. Comparison of the 
experimental and calculated values of the pressure acting from above 

and below on the obstacle, the values of t*, and the velocity oi the ob- 

stacle attest to the satisfactory agreement of the data of the test and caI-  

culations as regards both over-all  nature and numerical values. 

The curve of the dynamic compressibility of the soil was deter- 
mined in this way. It has been shown that this curve corresponds tO the 

equation of state of water-saturated ground regarded as an ideal three- 
component liquid for pressures in excess of 15-20.105 newton/m 2. 

The loads on the obstacle obtained by calculation turned out to be 
in satisfactory agreement with the results of their direct measurement 

in the tests. 

p. 105 newton/m 2 U m/see 
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Fig. 7 

We note that the international system of units has been used here. 
For convenience in comparing with the technical system, the pres- 
sure is given in 105 newton/m 2, which is equal to kg /cm 2 to the first 

approximation. 
The authors are grateful to S. D. Mizyakin for participating in the 

tests. 

REFERENCES 

1. G. M. Lyakhov, "Shock waves  in multi-component media," 

Izv. AN SSSR. OTN, Mekhanika i mashinostroenie, no. 1, 1989. 
2. G. M. Lyakhov, Basis of Explosion Dynamics in Soils and Li- 

quid Media [in Russian], Izd. "Nedra," 1964. 
3. S. S, Grigoryan, "Basic concepts of soil dynamics," PPM, vol. 

24, no. 6, 1960. 
4. G. M. Lyakhov and N. I. Polyakova, "The interaction of a 

shock wave in an elastoplasfic medium with a moving obstacle," PMTF, 

no. 5, 1962. 
5. G. M. Lyakhov and G. I. Pokrovskii, Blast graves in Soils [in 

Russian], Gosgortekhizdat, 1962. 
8. S. S. Grigoryan, G. M. Lyakhov, V. V. Mel'nikov, and G. V. 

Rykov, "Blast waves in loess-type soil," PMTF, no. 4, 1963. 
7. Z. V. Narozhnaya, "The experimental determination of the 

load distribution rate in soils for dynamic processes," Nauchno-tekhni- 

cheskie problemy goreniya i vzryva, no. 1, 1965. 

16 Augu}t 1965 Moscow 


